III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010 DIGITAL SIGNAL PROCESSING
 (COMMON TO BME, ECC)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Define: (i) Signal ii) Signal processing
b) Discuss the basic elements in a digital processing system
c) Show that the even and odd parts of a real sequence are, even and odd sequences respectively.
$[2+8+6]$
2.a) State and prove time and frequency shifting properties of Fourier transform.
b) Show that the frequency response of a discrete system is a periodic function of frequency.
3.a) State and prove circular time shifting and frequency shifting properties of the DFT.
b) Compute the circular convolution of the following two sequences, using DFT approach

$$
\begin{align*}
& x_{1}(n)=\{1,2,0,1\} \tag{8+8}\\
& x_{2}(n)=\{2,2,1,1\}
\end{align*}
$$

4.a) Implement the decimation in frequency FFT algorithm of N-point DFT where $\mathrm{N}=8$.
b) Compute the FFT for the sequence, $x(n)=\{1,1,0,0,1,1,1,0\}$
5.a) Determine the frequency response and magnitude response for the system:

$$
y(n)-\frac{3}{4} y(n-1)+\frac{1}{8} y(n-2)=x(n)-x(n-1)
$$

b) Determine the signal $x(n)$, where its z-transform is given by,

$$
\begin{equation*}
x(z)=\frac{z^{2}+z}{\left(z-\frac{1}{2}\right)^{2}\left(z-\frac{1}{4}\right)} \tag{6+10}
\end{equation*}
$$

6.a) Give the relation between analog and digital filter poles in I I M transformation and explain.
b) Discuss the aliasing effect due to impulse invariance transformation.
c) Compare bi-linear and impulse invariance transformation methods.
7.a) Using a rectangular window technique, design a low pass filter with pass band gain of unity, cut-off frequency of 1 kHz and working at a sampling frequency of 5 kHz . The length of the impulse response is 7 .
b) Compare I I R filters and FIR filters.
8.a) Design the following systems with minimum number of multipliers:
$H(z)=\frac{1}{4}+\frac{1}{2} z^{-1}+\frac{3}{4} z^{-2}+\frac{1}{2} z^{-3}+\frac{1}{4} z^{-4}$
$H(z)=\left[1+\frac{1}{2} z^{-1}+z^{-2}\right]\left[1+\frac{1}{4} z^{-1}+z^{-2}\right]$
b) Write briefly about digital processing of speech.

III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010 DIGITAL SIGNAL PROCESSING
 (COMMON TO BME, ECC)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) State and prove circular time shifting and frequency shifting properties of the DFT.
b) Compute the circular convolution of the following two sequences, using DFT approach

$$
\begin{align*}
& x_{1}(n)=\{1,2,0,1\} \tag{8+8}\\
& x_{2}(n)=\{2,2,1,1\}
\end{align*}
$$

2.a) Implement the decimation in frequency FFT algorithm of N -point DFT where $\mathrm{N}=8$.
b) Compute the FFT for the sequence, $x(n)=\{1,1,0,0,1,1,1,0\}$
3.a) Determine the frequency response and magnitude response for the system:

$$
y(n)-\frac{3}{4} y(n-1)+\frac{1}{8} y(n-2)=x(n)-x(n-1) .
$$

b) Determine the signal $x(n)$, where its z-transform is given by,

$$
\begin{equation*}
x(z)=\frac{z^{2}+z}{\left(z-\frac{1}{2}\right)^{2}\left(z-\frac{1}{4}\right)} \tag{6+10}
\end{equation*}
$$

4.a) Give the relation between analog and digital filter poles in I I M transformation and explain.
b) Discuss the aliasing effect due to impulse invariance transformation.
c) Compare bi-linear and impulse invariance transformation methods.
5.a) Using a rectangular window technique, design a low pass filter with pass band gain of unity, cut-off frequency of 1 kHz and working at a sampling frequency of 5 kHz . The length of the impulse response is 7.
b) Compare I I R filters and FIR filters.
6.a) Design the following systems with minimum number of multipliers:
$H(z)=\frac{1}{4}+\frac{1}{2} z^{-1}+\frac{3}{4} z^{-2}+\frac{1}{2} z^{-3}+\frac{1}{4} z^{-4}$
$H(z)=\left[1+\frac{1}{2} z^{-1}+z^{-2}\right]\left[1+\frac{1}{4} z^{-1}+z^{-2}\right]$
b) Write briefly about digital processing of speech.
7.a) Define: (i) Signal ii) Signal processing
b) Discuss the basic elements in a digital processing system
c) Show that the even and odd parts of a real sequence are, even and odd sequences respectively.
8.a) State and prove time and frequency shifting properties of Fourier transform.
b) Show that the frequency response of a discrete system is a periodic function of frequency.

III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010 DIGITAL SIGNAL PROCESSING
 (COMMON TO BME, ECC)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Determine the frequency response and magnitude response for the system:

$$
y(n)-\frac{3}{4} y(n-1)+\frac{1}{8} y(n-2)=x(n)-x(n-1) .
$$

b) Determine the signal $x(n)$, where its z-transform is given by,

$$
\begin{equation*}
x(z)=\frac{z^{2}+z}{\left(z-\frac{1}{2}\right)^{2}\left(z-\frac{1}{4}\right)} \tag{6+10}
\end{equation*}
$$

2.a) Give the relation between analog and digital filter poles in I I M transformation and explain.
b) Discuss the aliasing effect due to impulse invariance transformation.
c) Compare bi-linear and impulse invariance transformation methods.
3.a) Using a rectangular window technique, design a low pass filter with pass band gain of unity, cut-off frequency of 1 kHz and working at a sampling frequency of 5 kHz . The length of the impulse response is 7.
b) Compare I I R filters and FIR filters.
4.a) Design the following systems with minimum number of multipliers:
$H(z)=\frac{1}{4} \frac{1}{2} z^{-1}, \frac{3}{4} z^{-2}, \frac{1}{2} z^{-3}, \frac{1}{4} z^{-4}$
$H(z)=\left[1+\frac{1}{2} z^{-1}+z^{-2}\right]\left[1+\frac{1}{4} z^{-1}+z^{-2}\right]$
b) Write briefly about digital processing of speech.
5.a) Define: (i) Signal ii) Signal processing
b) Discuss the basic elements in a digital processing system
c) Show that the even and odd parts of a real sequence are, even and odd sequences respectively.
6.a) State and prove time and frequency shifting properties of Fourier transform.
b) Show that the frequency response of a discrete system is a periodic function of frequency.
7.a) State and prove circular time shifting and frequency shifting properties of the DFT.
b) Compute the circular convolution of the following two sequences, using DFT approach

$$
\begin{align*}
& x_{1}(n)=\{1,2,0,1\} \\
& x_{2}(n)=\{2,2,1,1\} \tag{8+8}
\end{align*}
$$

8.a) Implement the decimation in frequency FFT algorithm of N-point DFT where $\mathrm{N}=8$.
b) Compute the FFT for the sequence, $x(n)=\{1,1,0,0,1,1,1,0\}$

III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010 DIGITAL SIGNAL PROCESSING
 (COMMON TO BME, ECC)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Using a rectangular window technique, design a low pass filter with pass band gain of unity, cut-off frequency of 1 kHz and working at a sampling frequency of 5 kHz . The length of the impulse response is 7.
b) Compare I I R filters and FIR filters.
2.a) Design the following systems with minimum number of multipliers:
$H(z)=\frac{1}{4}+\frac{1}{2} z^{-1}+\frac{3}{4} z^{-2}+\frac{1}{2} z^{-3}+\frac{1}{4} z^{-4}$
$H(z)=\left[1+\frac{1}{2} z^{-1}+z^{-2}\right]\left[1+\frac{1}{4} z^{-1}+z^{-2}\right]$
b) Write briefly about digital processing of speech.
3.a) Define: (i) Signal ii) Signal processing
b) Discuss the basic elements in a digital processing system
c) Show that the even and odd parts of a real sequence are, even and odd sequences respectively.
$[2+8+6]$
4.a) State and prove time and frequency shifting properties of Fourier transform.
b) Show that the frequency response of a discrete system is a periodic function of frequency.
5.a) State and prove circular time shifting and frequency shifting properties of the DFT.
b) Compute the circular convolution of the following two sequences, using DFT approach

$$
\begin{align*}
& x_{1}(n)=\{1,2,0,1\} \tag{8+8}\\
& x_{2}(n)=\{2,2,1,1\}
\end{align*}
$$

6.a) Implement the decimation in frequency FFT algorithm of N-point DFT where $\mathrm{N}=8$.
b) Compute the FFT for the sequence, $x(n)=\{1,1,0,0,1,1,1,0\}$
7.a) Determine the frequency response and magnitude response for the system:

$$
y(n)-\frac{3}{4} y(n-1)+\frac{1}{8} y(n-2)=x(n)-x(n-1)
$$

b) Determine the signal $\mathrm{x}(\mathrm{n})$, where its z -transform is given by,

$$
\begin{equation*}
x(z)=\frac{z^{2}+z}{\left(z-\frac{1}{2}\right)^{2}\left(z-\frac{1}{4}\right)} \tag{6+10}
\end{equation*}
$$

8.a) Give the relation between analog and digital filter poles in I I M transformation and explain.
b) Discuss the aliasing effect due to impulse invariance transformation.
c) Compare bi-linear and impulse invariance transformation methods. [4+8+4]

